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This paper deals with the most common methods of interpretation of the thermally stimulated 
discharge (TSD) spectrum. TSD due to dipole disorientation, calculation of activation energies 
using initial rise method, graphical integration, and methods based on the variation of heating 
rates are described in some detail. It will be argued that calculation of activation energies from 
these methods strictly holds for relaxation of a single well-defined frequency. For a distributed 
relaxation, methods based on the variations of the heating rates are more appropriate, but 
certain difficulties may arise. 

1. I n t r o d u c t i o n  
Theories involved in thermally stimulated discharge 
(TSD) were described in a previous paper [1]. The 
purpose of this paper is to describe the most common 
methods used for the interpretation of the TSD spec- 
trum, including the initial rise method and the graphi- 
cal integration method. 

2 .  Analysis of TSD 
2.1. TSD due to dipole disorientation 
2.1.1. Single relaxation time 
The discharge of the frozen-in dipole polarization, 
P(t), in a short-circuited pola r electret under a linear 
heating rate, r, is considered here. Assuming that the 
polarization P(t)  decays with a single temperature- 
dependent relaxation frequency, ~(T), according to 
the Debye rate equation we have 

dP(t) 
- -  + o~(r)P(t)  = 0 (1) 

dt 

Integration of the above yields 

If: ] P(t)  = Po exp. - ~(T)dt  (2) 
d 

wheretd is the time of commencement of TSD. 
P~ is the attained equilibrium polarization before 

the start of the TSD and could be expressed by 

Pe = N p c o s O  (3) 

where N is the density of dipoles, p is the electric 
dipole moment and 0 is the angle the dipoles subtend 
with the applied field. For a low concentration of 

dipoles, the average orientation can be expressed as 

COS0 -- pEp (4) 
3k Tp 

The current density, j(t), due to the decay of the 
polarization is 

-- dP(t) 
j( t)  - 

dt 

= o~(T)P(t) (5) 

Using Equation 2, this can be expressed as 

j( t)  = ~(T)  Peexp - ct(T) dt (6) 
td 

In a TSD run, the temperature, T, is raised at a rate 
r = d T/dt ,  and the released current is expressed as 

j ( T )  ~(T)Peexp [ I f  r - = -- - ~ ( T ) d r  
F Td 

(7) 

using the conditions that at the start of the run, t = t d 

and T = Ta. 
The relaxation frequency for the dipole disorient- 

ation, ~(T) is often envisaged to follow an Arrhenius 
shift 

~(T) = 6~oexp(- A / k T )  (8) 

where e0 is the characteristic relaxation frequency 
( T ~  oc) and A is the activation energy for dipole 
disorientation. Equation 8 can be applied to describe 
the temperature shift of the relaxation frequency of 
well-characterized dipole groups normally associated 
with the ]3-type of relaxations. For dipole groups 
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where disorientations are brought about by the seg- 
mental and cooperative movements of segments of the 
main chains, the frequency shift can be better de- 
scribed by the WLF shift (applicable for T > Tg) 

~(T) = %exp[2.303 CI(T - Tg) 

x(C2 + T -  rg) -1] (9) 

where for most amorphous'polymers [2, 3] % = 
7x 10 .3 s -1, C 1 = 17.44 and C2 = 51.6K. 

Combining Equations 7 and 8 resUlts in the follow- 
ing expression for the TSD current density: 

j(T) = % e x p [ -  A/kT]Pe 

x exp - - ~(T) d T (10) 
r Td 

or substituting for Pr using Equations 3 and 4 

j(r) = %Np2e~ e x p [ -  A/kT] 
3k Tp 

• exp exp( - A/kT')dT' 
ra 

(11) 

Equation 11 describes the depolarization current 
density released due to a dipolar depolarization in a 
shorted electret. The first exponential, which domin- 
ates the expression at low temperatures, describes the 
initial increase of the depolarization current as the 
frozen-in dipoles gradually become disoriented. The 
second exponential which dominates at high temper- 
atures will gradually depress the current released until 
a maximum output current is reached, after which the 
currently rapidly falls as the induced polarization is 
exhausted. The current peak is thus asymmetric, hav- 
ing a steeper slope on its high temperature side. The 
theory of TSD due to dipolar disorientation as de- 
scribed above, can be extended to include systems 
with a distribution in relaxation times [3-6]. 

The peak temperature, Tm, for the current peak can 
be found by differentiating Equation 10 and also 
substituting for ~(T) from Equation 8 we have 

[- rA A -]1/2 
r m = [~-aoeXp( /krm)  ~ ( 1 2 )  

From the above it can be seen that T m will shift 
towards a higher temperature if a higher heating rate, 
r, is employed. Also for a fixed heating rate, the 
position of the peak (i.e. along the temperature axis) 
wili be an increasing function of A, the activation 
energy for disorientation as well as the natural relaxa- 
tion time, 1/~o, for the process. An interesting conclu- 
sion that can be drawn from Equation 12 is that T m is 
independent of the forming conditions, Ep and Tp, 
provided the equilibrium polarization has been at- 
tained. 

differing resistances to the disorientating or rotating 
dipoles in different areas of the bu!k. The dipoles then 
will have to surmount different activation energies 
resulting in different relaxation frequencies, ~i(T). As- 
suming that they still obey an Arrhenius shift, this can 
be written as 

~i(T) = ~o exp(Ai/kT) (13) 

Different relaxation frequencies may  also arise from 
different values of %, for which we have 

~i(r) = %i exp(A/k T) (14) 

A distribution of the type described by Equation 13 is 
usually encountered in [3-type of relaxations. The type 
described by Equation 14 is more likely to arise from 
relaxations associated with movements of the dipolar 
groups that move in unison with the micro-Brownian 
motions of the main chain segments, like the ~-relaxa- 
tion near Tg I-7]. Here different masses for the relaxing 
segments are most likely to be involved. 

Assuming that distributions in ~0 or A are continu- 
ous, their contributions towards the polarization, P(t), 
could be expressed as 

P(t) = Pef:f(%) 
I ; 1 xexp - so e x p ( -  A/kT)dt d% 

td 

(15) 

for a distribution in %. For a distribution in A, this 
can be written as 

P(t) = Pef:O(A) 

exp[-% ff~ exp(-A/kT)dtldA (16) 

The distributions are also normalized such that 

fo fo ~ f(~o)d~o = 9(A)dA = 1 (17) 

The corresponding expressions for the current can be 
found by differentiating Equations 15 and 16 which 
yields 

j(t) = Peexp(-A/kT) f:%f(%) 

xexpI-%fldexp(-A/kT)dtld% 

and 

j(t) 

(is) 

Pe% fo g(A)expI[- A/kT] -% 

x exp(-- A/kT dA 
td 

(19) 

2. 1.2. Distribution of relaxation times 
In the essentially non-crystalline polymeric solid, dif- 
ferent conformations that the macromolecules may 
adopt, will result in an environment that can offer 

The equations above also show that the TSD currents 
are independent of the forming conditions provided 
that the fullest possible polarization has been reached. 
If this condition is not achieved, say due to too short a 
polarization time, tp, or too low a temperature, Tp, 
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then an effective distribution can be defined by [8, 9] 

f* (%) = f(%) FS(%) (20) 
or  

9*(%) = 9(A)FS(A) (21) 

where FS(%) or FS(A) refers to the "filling state" of 
the polarization. For  a completely filled state, i.e. one 
where the electret has been polarized to its equilibrium 
polarization value, Pc, the parameter FS equals unity. 

2.2. Calculation of activation energies 
In theory, the activation energy of non-distributed 
relaxation process can be calculated from a single 
TSD curve by means of some characteristic elements 
of the peak such as its half-width, inflection point or 
initial part of the current rise. Other methods based on 
utilizing the whole current-temperature curve or that 
which uses several heating rates are also available. 
Most of these methods, except for the one using the 
whole of the TSD plot, were derived from methods 
based on the early works of thermoluminescence or 
thermally stimulated conductivity [10, 11]. 

2.2. 1. Initial rise method 
This method is credited to Garlick and Gibson [12] 
and is based on the fact that the second integral term 
in the j(T) expression (Equation 11) is negligible at 
temperatures T < T=. Thus, differentiating with re- 
spect to l/T, the following expression for the initial 
portion of the current rise is obtained: 

d 
- - l n j ( T )  = -- A/k (22) 
d(1/T) 

where A is the activation energy. By plotting lnj(T) 
versus 1/T, A can be determined. This procedure is 
generally advocated to be satisfactory and is widely 
used. It does not necessitate a linear heating rate nor a 
precise knowledge of the absolute temperature. 

The approximation that at T <Tm the TSD current 
can be simplified into j(T) = constant exp[  - A/kT] 
may not be true if the magnitude of the TSD signal in 
the rising portion of the plot is large when compared 
to the peak height. When this happens, then the plot of 
In j(T) versus 1/T ceases to be linear and a value of A 
(obtained from the slope) has to be corrected as 

A ...... tea = (1 + 0.74d t + 0.092dz)A 

- (2d 1 + 0.22d2)kT m (23) 

where A is the value obtained from the least-squares- 
fitted plot of lnj(T) versus lIT with experimental 
values of j (T)  that had been culled between two values 
of thecur ren t  j(T2) and j(TO where T 1 < T 2 < Tin. 
The parameters d 1 and d2 are defined as 

j(T1) 
dl - (24a) 

j(Tm) 

j(T2) 
d2 - (24b) 

j(Tm) 

The ranges of applicability of Equation 23 are 

d 2 ~< 0.5, d2/d I > 5, and 

Acorrected 
10 ~ ~< 100 (25) 

Krm 

2.2.2. Graphical integration method 
From Equation 5, the relaxation time can be written 
as [13, 14] 

 IT, PI , 
- j ( T )  r J ( T )  (26) 

or 

ln~(T)  = l n [ ! f f J ( T ' ) d T ' ] - l n J ( T )  (27) 

Assuming an Arrhenius shift for r(T), we have 

ln~(T)  = l n t o  + A/kT (28) 

The quantity ~(T) can be calculated by using Equa- 
tion 27 where we have taken the integral term to be 
easily evaluated by graphical integration of the area of 
the TSD peak from T---, ~ .  Knowing lnz(T) and 
plotting it against l/T, a straight line may be obtained, 
yielding the activation energy A. This straight line is 
usually called the BFG plot after Bucci et al. [13]. 
Like the initial rise method this procedure does not 
presume a linear heating rate, but unlike the former it 
utilizes data from the whole of the TSD peak. The 
BFG plot is to be preferred if the TSD plots exhibit 
large parasitic background currents which may be 
difficult to eliminate from the small current signal 
portion of {he initial rise. 

2.2.3. Methods based on the variation o f  
heating rates 

These methods are based on the shifts of the TSD 
current maximum with the heating rates employed. 
Several ways of plotting the  results have been pro- 
posed [15, 16]. It can be readily seen from Equation 
12 that 

k Tin' Tin2 ( r1T22"~ (29) 
A -- T m , _  Tin2 In \r2T2m ' / 

i.e. if the heating rate is changed from r 1 to re, the 
activation energy for the relaxation can be calculated 
from the corresponding shift of the peak temperature 
Tin, to Tm2. 

A better procedure utilizing a series of heating rates, 
r (resulting in corresponding Tins), was also suggested 
by Hoogenstraaten whereby the plot of ln(T2m/r) 
against 1/T m should yield a straight line, from the 
slope of which the activation energy can be found 
[17]. The accuracy of these methods will depend on 
the accurate control of the heating rates employed and 
also on the magnitude of the actual shifts of the Tms. 
Therefore it can be seen from Equation 12 that the 
method is less suitable for relaxations with large ac- 
tivation energies, A, because the shifts of the current 
maxima will be smaller and experimentally more diffi- 
cult to measure. 
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Several other methods to calculate the activation 
energy based on utilizing the shape or symmetry of the 
TSD peak can also be found [18• More recently, a 
new procedure has been proposed for a more accurate 
determination of the activation energy [22]. 

2.3. Calculation of other relaxation parameters 
If the activation energy for the relaxation is known by 
applying the procedure described above, then the 
characteristic frequency factor ~o = 1/% can be calcu, 
lated from Equation 12 if Tm is noted from the experi- 
mental peak. ~o can also be directly determined from 
the BFG plot (Section 2.2.2). 

The equilibrium polarization, P~, for the electret 
may also be obtained by integrating the area under- 
neath thej(T) curve, assuming that there was no loss 
or change of polarization during the coohng and 
isothermal stages of the TSD run, i.e. 

Hence 

vo = P(T.)  

= P(To) (30) 

f 
oo 

Pe = j ( T ) d T  (31) 
T d  

Also using the relation for the relaxation strength 

Pe 
- ( 3 2 )  

ao E v 

where Ep is the field applied during formation. From 
the above equation and using Equations 3 and 4 we 
can relate the experimentally observed quantity, Ae, 
with the molecular parameters, N, the dipole density 
and p, the dipole moment. This is expressed as 

Np 2 
As - (33) 

3eo k T r, 

where T o is the temperature of formation of the elec- 
tret. If either quantity N or p, is known, then the other 
can be calculated using Equation 33. The obvious 
condition is that Pe is adequately described by the 
Langevin equation and that it is recovered fully during 
the TSD. 

2.4. Activation energy for distributed 
processes 

The methods described previously to calculate the 
activation energy only holds strictly for relaxations of 
a single, well-defined frequency. For a distributed 
relaxation, the initial rise method for the calculation of 
the activation energy would theoretically yield too low 
a value by over emphasizing the role of the compo- 
nents with the slowest relaxation times. The graphical 
integration method will also have the same systematic 
error as a result of taking into account too high a 
number of components. 

It has been shown that the initial rise method can 
still be applied to the case where there is a symmetrical 
distribution in 1/~ o [5]. Up to the lower half-width 

temperature, the TSD current was shown to obey, 
approximately 

WA 
lnJ(T) ~ const - - -  (34) 

k T  

where W is a constant whose value will depend on the 
type of the distribution describing 1/%. Equation 34 
will also show that A can still be calculated by the 
initial rise plot. 

The methods based on the variations of the heating 
rates are still theoretically applicable, without modifi- 
cation, for the distributed process. This is so because 
the peak of the TSD current plot is determined essen- 
tially by the components with the average value of the 
activation energy. However, a problem would exist in 
the exact determination of T, nS and their shifts due to 
the broad nature of the TSD plots of the distributed 
systems. 

The determination of other relaxation parameters, 
such as the characteristic frequency, equilibrium po- 
larization and relaxation strength, is little affected by 
the existence of a distribution in relaxation times. The 
quantities can still be approximated by the equations 
of Section 2.2 [23]. 

2.5. Charge motion model 
Assuming that the decay of a uniform distribution of 
the excess charges obeys first order kinetics with a 
single relaxation time, then the classical methods (ini- 
tial rise, variable heating rate methods) used to evalu- 
ate the TSD parameters are still applicable. This 
follows from the similar functional relationship of the 
j (T)  expression for the different decay processes that 
was briefly discussed in the preceding sections. 

For a spatially non-uniform distribution of space 
charges, a modification to the graphical integration 
method has been proposed so that [24] 

if dj(r,)dT, llf j(T,)dT, ]-1 (35) 
is plotted against 1/T to yield the effective activation 
energy for the decay (compare with the BFG plot of 
Section 2.2.2). Another method has been discussed 
where the quantity in the following equation is plotted 
against 1/T [15] 

T d T , ] - I  
[ T 2 f T d J ( T ' ) d T ' I [ T 2 f : j ( T '  ) (36) 

It should be noted that the methods mentioned 
above are applicable in the low-temperature region of 
the current plots. The linearity of the latter plot is also 
suggested as a good test for the applicability of the 
charge motion model. The linearity of this plot is 
unique to the decay of a space charge polarization via 
their self-drift. 

In the charge motion model, it is also expected that 
the activation energy calculated from TSD data will 
be closely related to that for the dark conductivity 
mechanism in the medium and as such the method can 
be used as a good complement to the traditional 
current-voltage-temperature method, particularly 
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when blocking electrodes could not  be avoided 
[-25, 263. 

3. Conclusion 
In this paper, the most common methods of analysis 
of TSD were described. In view of the complexity of 
the charge storage mechanisms in insulators and the 
uncertainties associated with their physical structures 
in general, the interpretation of their TSD spectrums 
has to be carried out with some knowledge about the 
possible underlying microscopic processes involved. 
This is important because most models usually adop- 
ted for describing dipolar, ionic and electronic pro- 
cesses predict similar functional relationships which 
can lead to TSD peaks that look deceptively similar. 
The interpretation of the TSD results will be greatly 
facilitated if relevant factors such as physical structure, 
chemical content, thermodynamic behaviour, etc., are 
reasonably well known from other complementary 
experiments. 
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